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AbsVBcL The idcar of supen)mmcIric quantum mechanics are applied U) the non-rela. 
tibiruc hydrogen atom 10 give a first principles derivation of its Lenr vector. 

It is well known that the spectrum of the hydrogen atom possesses degeneracies beyond 
what one would expect from rotational invariance alone, and that the additional 
degeneracies are fully accounted for by an extra constant of motion in the problem, 
the so-called Laplace-Runge-Lenz vector. Knowledge of the Lenz vector permits a 
purely algebraic solution to the Coulomb problem that was first laid out in the classic 
works of Pauli, Fock and Bargmann and later elaborated on by many other authors. 
There is now a large literature [ 1,2] on the group theoretical approach to the Coulomb, 
oscillator and allied problems and its applications to various fields of physics. 

Recently an alternative approach to the degeneracies in  the hydrogen spectrum 
based on the notion of supersymmetry [3-51 was explored by several authors [&SI. 
For our purposes, the key idea of this approach is the following. The radial parr of 
the hydrogen atom wavefunction is determined by an effective potential that is the 
sum of the true (Coulomb) potential and a centrifugal bamer term. It turns out that 
the effective potentials for two neighbouring values of I (the orbital quantum number) 
are supersymmetric partners of each other, and that this fact can be used to account 
completely for the Coulomb degeneracy. The two alternative explanations of the 
Coulomb degeneracy-based either on the Len2 vector or on the idea of supersym- 
metry-appear to have little in common with each other. One naturally wonders what, 
if any, the connection between these two approaches is. The purpose of this paper is 
to answer this quesuon. We will show that if the supersymmetric approach is pushed 
far enough it will yield the explicit form of the Lenz vector, thereby making contact 
with the alternative approach. This point does not seem to have been demonstrated 
earlier, to the best of our knowledge. 

Our derivation is carried out in the context of the ?D hydrogen atom rather than 
the 3~ hydrogen atom, because the former has a smaller symmetry group and is easier 
to treat. The specific task before us is to use supersymmetry to deduce the extra 
constants of motion of the ZD hydrogen atom (besides. the orbital angular momentum 
component L,) and to relate these to the full three-dimensional Lenz vector. Before 
proceeding to this task, we summarize the main results from supersymmetric quantum 
mechanics that we need for this purpose. 

Consider a panicle of m a s  m moving in a one-dimensional potential V ( x ) .  If the 
ground state energy of the panicle is made zero (by il suitable redefinition of the energy 
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scale), the potential V ( x )  can be expressed in terms of the ground state wavefunction 
$o and its second derivative. When this is done the Hamiltonian of the system takes 
the form 
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H = (h2/2m)[-dz/dxZ+ $J;/$~]. (1) 

A = h(2m)-112[d/dx + A+ = A(2m)-‘”[-d/dx+ (2) 

If we define the operators 

(1) can be re-expressed as H =AA‘. We next introduce another Hamiltonian Hs = A’A 
which is conventionally termed the ‘supersymmetric partner’ of H. The relationship 
of H and Hs to each other and also the physical meanings of the operators A and A+ 
are illustrated in figure 1. One sees from the figure that H and Hs have the same 
energy eigenvalues except that the lowest eigenvalue of H is missing in Hs. The 
operator A+ has the property that it transforms anyeigenstate of H (except the ground 
state) into an eigenstate of Hs with the same energy. The operator A does the reverse, 
namely, it transforms any eigenstate of Hs back into an eigenstate of H with the same 
energy. The proofs of these statements may be found in any of the tutorial articles 
[3-51 on supersymmetric quantum mechanics mentioned earlier. 

. .  . 

H Hs 
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Figure 1. Spectrum of the Hamiltonian H (at left) and of its supersymmetric partner Hs 
(on right). Both spectra are identical except that the lowat energy level of H is missing 
in Hs. The operator A+ Uansfoms any eigemtate of H into an eigenstate of Hs with the 
same energy, while A transform any eigenstate of Hs into an eigenstate of H with the 
same energy. 

We turn now to the two-dimensional hydrogen atom (with l / r  potential between 
the electron and proton). The eigenvalues and eigenfunctions of this system were 
obtained a long time back by Zaslow and Zander [9 ] .  The polar eigenfunctions are 
labelled by an energy quantum number n and an angular momentum quantum number 
1. The energy quantum number takes on all integer values from one up while, for a 
given n, [,takes on all values from -( n - 1) to ( n  - 1) in integer steps; thus the degeneracy 
associated with a particular n value is 2n - 1. Figure 2 shows the spectrum of the ZD 
hydrogen atom, with degenerate states placed alongside each other in horizontal rows: 
the ground state ( n  = 1) is non-degenerate, the first excited state ( n  = 2) is threefold 
degenerate, the second excited state (n = 3) is fivefold degenerate, and sa on. The 
states also form vertical towers, with each tower being characterized by a particular 
value of 1. Two neighbouring towers with 1 values differing by unity have identical 
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Figure 2 Spectrum of the two-dimensional hydrogen atom. Each level is labelled by two 
quantum numbers, the energy quantum number n and the orbital quantum number 1. All 
levels in the same horizontal row share the same energy quantum number n, which is 
indicated to the left of the mw. All levels in the same column (or tower) share the same 
orbital quantum number I, which is indicated at the bottom of the tower. 

energy levels except that’the tower with the higher I has one level (the lowest) missing. 
This is reminiscent of figure 1 and suggests that the effective potentials that give rise 
to these towers are supersymmetric partners of each other. From what was said in the 
previous paragraph, we can anticipate the existence of supersymmetry operators A 
.and A+ that allow us to pass horizontally between towers. However we know that any 
operators that transform degenerate eigenstates into each other must commute with 
the Hamiltonian. Thus we are led to suspect that the operators A and A+must somehow 
be related to components of the Lenz vector. We proceed to supply the analytical 
detail needed to refine and complete this argument. 

The first step in applying supersymmetry’to the problem is to reduce~the Schrodinger 
equation to a one-dimensional form. If we write the hydrogen atom wavefunction as 
*(r, rp) = r-’”u(r) exp(ilp), we find that the reduced radial wavefunction u(r) obeys 
a one-dimensional Schrodinger equation containing the effective potential 

V,(r) = -eZ/r+(hz/2m)(12-$)/r‘. (3) 
For a particular I this effective potential generates one of the vertical towers shown 
in figure 2. To construct the supersymmetry opemtors that connect towers with quantum 
numbers 1 and 1+1, we need the ground state eigenfunction of the effective potential 
V,. This is found to be ~o=r’~’/zexp[-(mez/hZ) (Z+$)-’r] up to an unimportant 
normalization factor (we have specialized to the case l > O  for definiteness). At 
this point we can verify that the effective potentials V, and V,+, indeed satisfy the 
relation [3] 

&+&) = - V(r) + (fiZ/m)(6k/@dZ (4) 

required of a potential and its supersymmetric partner. On substituting the expression 
for *,, into (2) we obtain the supersymmetry operators as 

A = fi(2m)-‘’*[d/dr + ( I  +i)/r - ( mez/ f i 2 ) / (  1 +4)] 

A+ = h(2m)-”’[-d/dr+ (Z+$)/r- (mez/h*)/(Z+$)]. 

(50)  

(56) 

and ’ .  ~, 
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These operators connect the reduced radial wavefunctions u..,(r) and uns+l(r), i.e. A+ 
transforms unJr) into u,,l+l(r) and A does the reverse. We want to construct the 
generalizations of (5a) and (5b) that transform the ZD eigenfunctions $n,l(r, (p) and 
$n,l+,(r, p) into each other. 

As a first step in this direction, we modify (sa) and (56 )  so that they transform 
the full radial functions R,Jr) = r-’”un,{(r) and R,,l+,(r) into each other. This merely 
involves changing ( I + $ )  to (1+1) in the middle term of (sa) and ( I + ; )  to I in the 
middletermof (5b) .  Next wemultiplythemodifiedformsof (sa) and(56) by h(Zm)-”’ 
(to give them dimensions of energy-length, the dimensions of the sought after Lenz 
vector) and pull out a factor of (21+ 1)“ in front to obtain 
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A= (fi2/2m)(21+1)-’[(21+1) d/dr+(21+ 1)(I+ l)/r-2(mez/fi’)] (6a) 
and 

A+ = (fi2/2m)(21+ 1)-’[-(21+ 1) d/dr+ 1(21+ l)/r-Z(mez/fiz)]. (6b) 

To complete the transformation of (6a) and (6b) we (1) replace 1 everywhere in A+ 
by -iJ/Jp and ( I + 1 )  everywhere in A by -iJ/Jp (because these derivatives, acting 
on the angular functions e’” or ei(’+’)’, give back I or I +  1, respectively); and (2) affix 
an overall factor of eiO to A+  or^ e-i+‘ to A (because the full ZD forms of A+ or A must 
increase or decrease I by one unit in the angular part of the wavefunction). On 
incorporating these changes into (6a) and (6b)  and dropping the overall factor of 
(21 + 1)-‘ we obtain 

A = 

and 

f i  ’/2 m)[ -2iJ’/Jraq - J/ Jr - (2/ r) a’/ Jp’ + (i/ r) J/ Jq] - e+e’ (7a) 

(76) A+ = e“(fi’/2m)[2iJ2/JrJp -alar- (2/r)a2/Jpz- (i/r)J/Jp] - eivez. 

Now we introduce the Hermitian operators A, =$(A+tA)  and Ay= -$(A+-A). The 
expressions for these operators in ZD Cartesian (x, y )  coordinates are found to be 

A , = ( Z m ) - ’ ( p ~ : + L , p , ) - e ’ x / r  (Sa) 

Ay=(2m)-‘(-pxL,- Llp,)-e’y/r (8b) 

where p and L are the momentum and angular momentum operators, respectively. A, 
and Ay as given in (S), together with L,, constitute the three constants of motion of 
the ZD hydrogen atom. 

It is easily verified that (Sa) and (Xb) are just the x- and y-components of the Lenz 
vector-operator [lo] 

and 

A = (2m)-’(p xL-Lxp)-ezr/r  (9) 
but with all dependences on the z-coordinate suppressed. If one insists that there be 
total symmetry between the coordinates x, y and z (as we know must be the case for 
the 3~ hydrogen atom), then (9) is easily seen to be the simplest vector operator 
consistent with (8). This completes our derivation of’the Lenz vector. 

Recently several authors [5,7,8] have shown how the supersymmetry of both the 
non-relativistic and relativistic Coulomb problems can be exploited to calculate their 
energy eigenvalues and eigenfunctions. The present paper demonstrates yet another 
use of supersymmetry-namely, the deduction of the Lenz vector. We should remark 
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that an alternative quantum mechanical derivation ofthe Lenz vector was given many 
years back by Bander and Itzykson [It], based on the earlier work of Bargmamm and 
Fock. In this method 111,121 one begins from the Schrodinger equation in momentum 
space and stereographically maps the momentum variables onto the surface of a 
four-dimensional sphere (of suitable energy-dependent radius) in order to bring out 
the full SO(4) symmetry of the problem. The six generators of the rotations that take 
the four-dimensional sphere into itself then yield the three components of the orbital 
angular momentum and the three components of the Lenz vector [13]. 

Perhaps the most striking implication of the supersymmetry of the hydrogen atom 
is that there are connections between different atoms/ions in the Periodic Table. %is 
connection was k s t  pointed out by Kostelecky and Nieto [6]  and later analysed from 
a somewhat dserent point of view by Haymaker and Rau [4]. 

Acknowledgments 

We would like to thank Professor A R P Rau for his valuable comments on a first 
draft of this manuscript and for bringing the papers in [I33 to our attention. He is, of 
course, in no way responsible for any shortcomings in this work. 

References 

[l] Engelfield M J 1972 Group Theory and the~covlomb Problem (New York Wiley-Interscience) 
Wyboume B G 1974 Classical Groups for Physicists (New YorkWiley) 
deLange 0 L and Raab R E 1991 Operator Mehods in Quantum Mechanics (New York: Oxford 

University Ress) 
[2] Kibler M, Ronveaux A and Negadi T 1986 On the hydrogen-oscillator connection: passage formulas 

between wavefunctions J.  Moth Phys 17 1541-8 and references therein 
Kostelecky V A, Nieto M M  a n d T m u  D R 1985 Supersymmetry q d  the relation between the Codxnb  

and oscillator problems in arbitrary dimensions Phys. Rev. D 32 2627-33 and references therein 
[3] Dutt R, K h a n  A and Sukhatme U P 1988 Supersymmetry, shape invariance and exactly solvable 

potentials A n i 1  Phys 56 163-8 
Sukumar C V 1985 Supersymmetry, factorization of the Schr6dinger equation and a Hamiltonian 

heirarchy I. Php. A: Math. Gen. 18 L57-61 
[4] Haymaker R Wand Pan A R P 1986 Supersymmetry in quantum mechanics Am. 1. Phys. 54 928-36 
[ 5 ]  Valance A, Morgan T J and Bergeron H 1990 Eigensolution ofthe Coulomb Hamiltonianvia supersym- 

[6] Kostelecky V A and Nieto M M 1984 Evidence for a phenomenological supersymmetry in atomic 

[7] Sukumar C V 1985 Supersy”eV)i and the Dirac equation for a central Coulomb Eeid 1. Phys. A: 

[SI de Lange 0 Land Welter A 1992 Shape invariance~of Coulomb problems Am 1. Phys. 60 254-7 
[9] Zaslow B and Zandler M E 1967 Two-dimensional analog to the hydrogen atom A m  J.  Phys. 35 1118-9 

Jauch J M and Hill E L 1940 On the problem of degeneracy in quantum mechanics Phys. Rev. 57 641-5 
[lo] Schiff L I 1968 Quantum Mechanics 3rd edn (New York McGraw-Hill) ch7 
1111 Bander M and Itzykson C 1966 Group theory and the hydrogen atom (I) and (11) Rev. Mod. Phys. 38 

[I21 Shibuya T and Wu1fman.C E 1965 The Kepler problem in two-dimensional momentum space Am. .L 

1131 Coish H R 1956 Infeld factorization and angular momentum Can. 3. Phys. 34 343-9 

metry A m  1. Phys. 58 487-91 

physics Php.  Reu. Lett. 53 2285-8 

Math. Gen. 18 L697-701 

330-58 

B ~ S .  33 570-4 

Coulson C A and Joseph A 1967 Self adjoint ladder operators Reu Mod. Phys. 39 838-49 


